منابع مشابه
A New Mixing Rule for Mixtures of Hard Spheres
A mixing rule for the mixtures of hard-spheres is presented which can be reduced to the standard van der Waals mixing rule at low densities. The effectiveness of the mixing rule for the size and energy parameters of lennard-Jones fluid are examined by combining them with an equation of state to calculate thermodynamic properties. The results of calculation are compared with the molecular dy...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملa new mixing rule for mixtures of hard spheres
a mixing rule for the mixtures of hard-spheres is presented which can be reduced to the standard van der waals mixing rule at low densities. the effectiveness of the mixing rule for the size and energy parameters of lennard-jones fluid are examined by combining them with an equation of state to calculate thermodynamic properties. the results of calculation are compared with the molecular dynami...
متن کاملhermitian metric on quantum spheres
the paper deal with non-commutative geometry. the notion of quantumspheres was introduced by podles. here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملExciting hard spheres.
We investigate the collision cascade that is generated by a single moving particle in a static and homogeneous hard-sphere gas. We argue that the number of moving particles at time t grows as t;{xi} and the number collisions up to time t grows as t;{eta} , with xi=2d(d+2) , eta=2(d+1)(d+2) , and d the spatial dimension. These growth laws are the same as those from a hydrodynamic theory for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1964
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.51.4.629